Global Learning Initiatives Program Course Syllabus

Course Information

Course Name	Semiconductor Physics and Devices (I)		
Lecturer(s)	Tian-Li Wu		
Course Description	Semiconductor technologies become the necessary to enable high performance electronic products. Recently, the demanding of the new applications, such as 5G, AI, cloud computing, and Electric vehicle, trigger the innovations of the semiconductor technologies. The core knowledge for the state-of-the-art semiconductor technologies is the Semiconductor Physics and Devices, which is essential for every researchers and engineers. In this class, the properties for the semiconductor materials, the physics of the carrier drift, and the operation principals for the most important devices architectures, i.e., Diode, BJT, MOSFET, and JFET, will be introduced and discussed in details. Furthermore, the recent progress and challenges in developing beyond Moore's law technologies will be reviewed.		
Course Objectives Suggested	 Intended Learning Outcomes (ILOs): By the end of this class, you should be able to: 1. Explain the basic materiel properties and device physics. 2. Apply the device physics to evaluate the operation principles of p-n diodes, MOSFETs, BJTs, and JFETs. 3. Evaluate the current issues in the scaling technologies (More Moore technologies), e.g., short channel effects, ultra-thin dielectric, subthreshold swing (SS), etc. 4. Propose the designs to overcome the challenges in the scaling semiconductor technologies. 1. Graduate students/ undergraduate students who have 		
Proficiencies	knowledge in basic physics.		
(if any)	2. Passion in semiconductor technologies		

Reading List	1. D. Neamen, Semiconductor Physics And Devices, 4th			
(if any)	edition (2012)			
	2. Lecture notes			
Grading Criteria	Exam 50%			
	Homework 35%,			
	Class participation 15%			

Course Schedule

Class	Date	Course Topic	Lecturer
	(YYYY/MM/DD)		
1	2021/2/22	Introduction	Tian-Li Wu
2	2021/3/01	Holiday	Tian-Li Wu
3	2021/3/08	The Crystal Structure of Solids	Tian-Li Wu
4	2021/3/15	Introduction to Quantum	Tian-Li Wu
		Mechanics and Quantum Theory	
		of Solids	
5	2021/3/22	The Semiconductor in	Tian-Li Wu
		Equilibrium & Carrier	
		Transport	
6	2021/3/29	The Semiconductor in	Tian-Li Wu
		Equilibrium & Carrier	
		Transport	
7	2021/04/05	Holiday	Tian-Li Wu
8	2021/04/12	Nonequilibrium Excess Carriers	Tian-Li Wu
		in Semiconductors	
9	2021/04/19	The pn Junction	Tian-Li Wu
10	2021/05/03	The pn Junction Diode	Tian-Li Wu
11	2021/05/10	The Bipolar Transistor	Tian-Li Wu
12	2021/05/17	The Bipolar Transistor	Tian-Li Wu
13	2021/05/24	Metal-Oxide-Semiconductor	Tian-Li Wu
		Field-Effect Transistor	
14	2021/05/31	Metal-Oxide-Semiconductor	Tian-Li Wu
		Field-Effect Transistor/	
		Junction Field-Effect Transistor	

15 2021/06/07 Final exam	Tian-Li Wu
--------------------------	------------