Global Learning Initiatives Program Course Syllabus

Course Information

Course Name	Semiconductor Devices and Physics		
Lecturer(s)	Kuan-Neng Chen		
Course Description	1. Fundamentals		
	2. Metal-Semiconductor Junction		
	3. p-n Junction		
	4. Metal-Oxide-Semiconductor Structure		
	5. MOS Field-Effect Transistor		
	6. Bipolar Junction Transistor		
Course Objectives	Emphasis on physical understanding of device operation		
	through energy band diagrams and short-channel		
	MOSFET device design.		
Suggested	Vnoveledge of besie Floetropies		
Proficiencies	Knowledge of basic Electronics		
(if any)			
(II ally)			
Reading List	Textbook:		
(if any)	D. A. Neamen, Semiconductor Physics and Devices,		
	Mc-Graw		
	References:		
	S. M. Sze, Semiconductor Devices: Physics and		
	Technology, Wiley		
Grading Criteria	Quiz 1: 25%		
	Quiz 2: 25 %		
	Final Exam: 25%		
	Homework + Class interaction: 25%		

Course Schedule

Week	Date	Course Topic	Lecturer
	(YYYY/MM/DD)		
1	2020/3/4	Course overview;	Kuan-Neng Chen
		Semiconductor Development;	
		Crystal Structure and Electrical	
		Conduction	
2	2020/3/11	Crystal Structure and Electrical	Kuan-Neng Chen
		Conduction; Electron Statistics	
		and Intrinsic Semiconductor	
3	2020/3/18	Extrinsic Semiconductors;	Kuan-Neng Chen
		Carrier Transport Phenomena	
4	2020/3/25	Carrier Transport Phenomena	Kuan-Neng Chen
5	2020/4/1	Carrier Generation and	Kuan-Neng Chen
		Recombination; Mid-Term	
		Exam	
6	2020/4/8	Carrier Generation and	Kuan-Neng Chen
		Recombination	
7	2020/4/15	Carrier Generation and	Kuan-Neng Chen
		Recombination; Carrier Flow	
8	2020/4/22	Metal-Semiconductor Junction	Kuan-Neng Chen
9	2020/4/29	Metal-Semiconductor Junction	Kuan-Neng Chen
10	2020/5/6	p-n Junction	Kuan-Neng Chen
11	2020/5/13	p-n Junction; Mid-Term Exam	Kuan-Neng Chen
12	2020/5/27	The Si surface and the	Kuan-Neng Chen
		Metal-Oxide-Semiconductor	
		Structure	
13	2020/6/3	Metal-Oxide-Semiconductor	Kuan-Neng Chen
		Structure	
14	2020/6/10	Metal-Oxide-Semiconductor	Kuan-Neng Chen
		Field-Effect Transistor	
15	2020/6/17	Metal-Oxide-Semiconductor	Kuan-Neng Chen
		Field-Effect Transistor; Bipolar	
		Junction Transistor	
16		Final Exam	Kuan-Neng Chen